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For the system with a one-dimensional spatially periodic potential we demonstrate that small periodic
in-time perturbation results in the appearance of chaotic instanton solutions. We estimate the parameter of local
instability, the width of the stochastic layer, and the correlator for perturbed instanton solutions. The applica-
tion of the instanton technique enables us to calculate the amplitude of the tunneling, the form of the spectrum,
and the lower bound for the width of the ground quasienergy zone.
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I INTRODUCTION T is the real-time period of perturbatior, describes the

) ) strength of the perturbation. The mass of the particle equals

Tunneling as an inherently quantum phenomenon attractge ynit. The considered cosine potential corresponds to the
much attentiorj1]. Its connection with classical chaos in the ngnlinear oscillator. The phase space of the nonlinear oscil-
semiclassical regime has also been discuga&ll A number lator has the topol f th lindépoint 5 and
of works were devoted to semiclassical chaos assisted turg o' 12> e_ opo_c_)gy ° e_cy points (@.p) a (q_
neling between symmetry-related Kolmogorov-Arnold- *27.P) are identified. Thus its(quasjenergy spectrum is
Moser(KAM ) tori in systems with mixed dynamicthe well dlscretg. Chao_s-a}sssted tgnnelmg betyveen two major reso-
developed chaotic region coexists in phase space with regif@nce islanddinside the single potential welifor driven
lar island$ [4—6]. To describe chaos-assisted tunneling innonlinear oscillator has been studied numerically4h In
systems with mixed dynamics the multilevel model Hamil- this work we study the system withvarying from — to
tonian, primarily proposed ifi2], is often used7]. Less - This results in the band structure of tfguasjenergy
attention has been paid to semiclassical tunneling in KAMSPectrum[14]. Systems with a spatially periodic potential
systems(the chaotic region is not widesprég@]. Another ~ Were studied in instanton physi€$5]. Perturt_)a_tl_on used in
way to describe semiclassical tunneling is based on solutior§d- (1) was exploited in the systems exhibiting quantum
of Hamilton equations in imaginary time and path integral¢ha0s[16,17. . _
formalism [1]. The instanton techniqugd] was used in a 1here are papers devoted to chaos-assisted tunneling
very few works[10]. where some analytical predictions for billiard systems based

In this work we consider one-dimensional quantum sysn the path integral formulation of quantum mechanics are
tem with a periodic in-space potential affected by a Sma"made[?,]._A_dlstlngwshmg feature_of our work is the ar_walytl-
periodic in-time perturbation. We use methods created to dek@l predictions for the system with a smooth potential. For
scribe chaos in classical Hamiltonian systems to investigatilis purpose we explore the instanton technique adopted
the essentially quantum phenomenon of tunneling. It igrom quantum field theory9].
achieved in the framework of the instanton technique, where

solutions of Euclidian equations of motigmstanton play II. ANALYSIS OF CHAOTIC INSTANTON SOLUTIONS
a dominating role with the use of standard methods from the . . ) ]
viewpoint of chaog11]. For the systems with periodic in- _ For applying the instanton technique we consider solu-

time perturbation energy is no more an exact integral of molions of classical equations of motion imaginary (Euclid-
tion and the language of quasienergies is more adefi2te ian) time. The_ I—_|am|!ton|ar(1_) has th_e same forrttranslated
For some estimations energy as an adiabatic invariant ca# 7) in Euclidian time as in real time. .

also be used13]. We study properties of chaotic instanton ~ The Euclidian Hamiltonian of the system fis=H,+V,

solutions and calculate the form of the spectrum and thavhere

lower bound for the width of the ground quasienergy zone.

A Hamiltonian of the system under consideration is taken H _1 2 2 5
in the form 0= 5 P77 g COSX @
+o0 and
~ 1., ~
H=§p + wg COSX— €X 2 S(t—nT). (1)
n=—owx + o
V=aTx 2, &(r—nT). (3
n=—ow
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We also introduced the coupling constam€l instead of Here yo=i(7y) and the time of correlations decay ig
e=aT in order to simplify formulas. =27/(wInKy). The exponential decrease of the correlator
The nonperturbed instanton solution describes the motioshows that the dynamics of the instanton solutions inside the
on the separatrix of the Hamiltonigi2). It is well known  stochastic layer Ko>1) possesses the property of mixing
that this separatrix is destroyed by any periodic perturbatiorichao$ [11].
and on its place a stochastic layer is pregdaii. Perturbed Note that the perturbed one-instanton solution due to the
instanton solutions correspond to the motion in the vicinitystochastic layer connects not only neighbor vacua of real-
of the separatrix inside the layer. Therefore, instead of onéme potential but also twarbitrary chosen vacua. We note
instanton solution connecting the neighbor maxima of thehat in order to describe tunneling between non-neighbor
nonperturbed Euclidian potentiédlassical vacuum states in vacua of nonperturbed systems one has to take into account
a real-time potentia) we obtain a manyfold of instanton so- the contribution of multi-instanton configuratiofk5].
lutions of Euclidian equations placed inside the stochastic

layer.
We calculate the parameter of the local instability, the IIl. THE CALCULATION OF THE TUNNELING
width of the stochastic layer, and the correlator for perturbed AMPLITUDE AND GROUND ZONE WIDTH

instanton solutions. It is convenient to describe the dynamics ) ) )
of the system in action-angle variablgs]. The equation of ( Let us consider the tunneling between neighbor vacua

motion for the action variable has the form from x~—a to x~ = for distinctnesy in the presence of
) o perturbation(3). In Euclidian time this tunneling process for
=— ax 2> cogmyr)+1]. 4) the nonperturbed system is described by the solution of Eu-
m=1 clidian equations of motion with asymptotes= —m, p

=0 atr=—o andx=, andp=0 atr= +o. There is only
Herew(1)=dH,/dl is the nonlinear frequendyl1]. Instead  one solution satisfying these conditions for the nonperturbed
of an angle variable we introduce a phase of the externadystem(2) (a one-instanton solution
force ¢ defined by the relationy=v=2=/T [13]. Let Hq
Ewé denote the energy of a nonperturbed system on the ,
separatrix. Continuous equations of motion faand ¢ can Xg'*'(7— 10) = — m+ 4arctane”ol” 70, )
be reduced to discrete mapping for the phase of external

force in the vicinity of the separatrix [i—Hg<1) _
[13,16,17 Its Euclidian action iS"$'=8w,. The instanton’s position is
_ ; denoted byry. Due to Euclidian equations of motion and the
Ynea= ¥nt Bt Ko SN gy, ® antisymmetry oS!, when time is inverted with respect to
where the pointr, perturbation(3) does not change the Euclidian
8mav e ™2w0 action of the one-instanton soluti@f) in the first order on
Ko=——TH_HT" the coupling constan,s,;=S"*'+0O(a?). The only mani-
wo | ! festation of the perturbation in this approximation is the ap-
B, are some functions dfl whose exact form is not essential Pearance of a number of the additional solutions of Euclidian
for our purposes. We assume, followifil@], that due to a €quations of motion with energies close to the energy of the
small value of perturbation the energy practically does noflonperturbed one-instanton solution and placed inside the
change with time and equals the energy of the nonperturbe¥fochastic layer. .
system. The may5) with an arbitrary parametekK, was Let us consider firstly the nonperturbed system at arbi-
studied by many authors, for instanks]. Particulary, it is ~ trary energy—wg+e, 0<e<2wj. One-half of the trun-
known that atk,>1 the motion is locally unstable and cha- cated instanton action can be easily calculated,
otic, whereas aky=<1 it is stable and regular. Thig, is the
parameter of local instability. Conditiddy~ 1 enables us to

calculate the width of the stochastic layer S[Xinst(T e)]= J'a(g) \/Z[wgcoy—(—wngs)]dx
—a(e)
8mav —7v2w ’
[Hs—Hp|= ——e ™", (6) 1
0 =4 4w§—28E a(e) /1|, 9
HereHy is the energy value on the bound of the stochastic 1— &
layer. 2w}

To calculate the correlator for the perturbed instanton so-
lutions we use the standard technidu&]. For the map5)

the correlator is where +a(g) = *arcsin/1—&/2w3 are turning points, and
1 2 the functionE is the elliptic integral of the second kind.
_ N : T 7o Then the tunneling amplitude in thperturbedsystem can
R(7,79)= diyy expli - ~exp — . ) _ .
(7,70) wao o X[ ¥(7) = Yol} p( R ) be found by integration over the energy of the tunneling

) amplitude in thenonperturbedsystem with the actioii9)
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AH X(r)~m . 1 inst
A=f dsf( ) Dx exp{—S[x'"Y(7,e)]}, (10 E9~§wo—2e‘s VS"S'Fcow. (14
0 X(r)~—m

where AH=2|H,—H,| is the stochastic layer width. The _ _ _

contribution of the chaotic instanton solutions is taken intoHere the continuous variablé parametrizes levels of the

account by means of integration over Expression(10) ~ 9ground quasienergy zone. The zone width

shows that the probability of tunnelinghe square of the

absolute value of the tunneling amplitydgrows while the st

chaotic region spreads\H increases AE~4e ° "SI (19
The result is obtained in the first order on the coupling

constantx and does not take into account the possible struc-

ture of the stochastic layer. It is valid if the layer is narrow differs from the nonperturbed case by a fadtathat reflects

and is in agreement with results of numeri¢ab,2q and the influence of perturbation.

real[6] experiments for similar problems. We also have cor-

respondence in Eq0) with the nonperturbed cadd5].

Namely, if =0 thenAH=0 and the single solution de- IV. CONCLUSION

scribing the motion on the separatfihe nonperturbed one-

instanton solutioncontributes to the tunneling amplitude.
Formula(10) can be made more transparent if we use th

approximate form of actiof9) at e <2w3,

We applied the theory dflassicalchaos for an investiga-
etion of the chaos-assistdédnnelingin terms of the path in-
tegral formalism in imaginary time and instanton techniques.
We found the parameters of the local instability and the
width of the stochastic layer. An exponential decrease of the
XY 7,6)]~8wy— e (11)  correlator for any perturbed instanton solution was also dem-
w onstrated, which means it possesses the property of mixing.
Then properties of the stochastic layer and classical chaotic
Then in the Gauss approximation we obtain the followingsolutions in Euclidean spadehaotic instantonswere used
expression for the tunneling amplitude: for the calculation tunneling amplitude and the ground
quasienergy zone spectrum in the presence of the perturba-

_[AH +oo — inst tion and the zone width.
A= Jl) dsﬁw deoVSIX"(7,e) Jexp — S[X""*H(7,e) ]} The general tendency for the chaos-assisted tunneling re-
gime (on average — if we abstract from fluctuatipns an
~efsmst\/STSTF: JBw,l e BeogmAH/wo (12)  increase of the tunneling amplitudgrobability) as the

strength of the perturbation incread€s20]. It is confirmed
here. The reason is the growth of the width of the chaotic
layer and therefore the increase of the number of paths for a
particle to travel from one regular region to another. For
small energies in the Gauss approximation the tunneling am-

FactorF = exp(mAH/wg)>1 in Eq.(12) differs between per- plitude is increased by the factér>1. The lifetime of the

turbed and nonperturbed amplitudes and includes the contrP—artICIe In a certain vacuum of the system decreases. It is
bution of the layer. One can think aboktas a number of connected W't_h the Wldenlng_ of tf(quas)energ_y zond15).
instanton solutions inside the stochastic layer We would like to emphasize that the obtained results are

We can find the minimal number of instanton solutions™Ct consequences of a particular choice of the nonperturbed
inside the stochastic layer. One cannot distinguish instantoh"”‘.m'Iton'an (2) or perturbation(3). Quaht_atwely they are
solutions within the energy interval E~ 1/A 7 (the Heisen- valid for a more general class of one-dimensional nonper-

berg uncertainty relation Here A7~ w, * denotes the time turbed Hamiltonians with a quadratic dependence on the mo-

: . . mentum and the spatially periodic potential with a single
mtgrval of. observauop. Thus the energy interval between th(\a/vell in each period, as well as the fact that the time depen-
neighbor instantons iAe~ wy. Therefore parametdf can

be found as follows: dence of the homogeneous perturbation can be realized by
' any time periodic function. The reason is the universality of
the separatrix destruction mechanism in these potentials that
F~1+ A_H%eAH/wO’ (13) is affected by time-periodic perturbatigm3].
Ae Tunneling plays an important role in gauge field theories
(instanton physic§9]). The experimental discovery of QCD
where the unit takes into account the nonperturbed separistantons, for example, is an important problggh]. More-
trix. over, it is known that classical gauge field theories are inher-
The form of the spectrum of the lower quasienergy zoneently chaotic[22]. Therefore, the study of chaos-assisted in-
is obtained using the amplitud@2) by means of the stan- stanton tunneling in gauge field theories based on chaos
dard techniquémulti-instanton contributions are taken into criterion in quantum field theory23] is also of essential
accouny [15], interest.

where integration over, gives the contribution of zero

modes, and’ is a time of the tunneling. Formuld2) up to

the factori has the same form in real Minkovski time.
Expression(12) can be interpreted in the following way.
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