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Chaos-assisted instanton tunneling in one-dimensional perturbed periodic potential
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For the system with a one-dimensional spatially periodic potential we demonstrate that small periodic
in-time perturbation results in the appearance of chaotic instanton solutions. We estimate the parameter of local
instability, the width of the stochastic layer, and the correlator for perturbed instanton solutions. The applica-
tion of the instanton technique enables us to calculate the amplitude of the tunneling, the form of the spectrum,
and the lower bound for the width of the ground quasienergy zone.
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I. INTRODUCTION

Tunneling as an inherently quantum phenomenon attr
much attention@1#. Its connection with classical chaos in th
semiclassical regime has also been discussed@2,3#. A number
of works were devoted to semiclassical chaos assisted
neling between symmetry-related Kolmogorov-Arnol
Moser~KAM ! tori in systems with mixed dynamics~the well
developed chaotic region coexists in phase space with r
lar islands! @4–6#. To describe chaos-assisted tunneling
systems with mixed dynamics the multilevel model Ham
tonian, primarily proposed in@2#, is often used@7#. Less
attention has been paid to semiclassical tunneling in KA
systems~the chaotic region is not widespread! @8#. Another
way to describe semiclassical tunneling is based on solut
of Hamilton equations in imaginary time and path integ
formalism @1#. The instanton technique@9# was used in a
very few works@10#.

In this work we consider one-dimensional quantum s
tem with a periodic in-space potential affected by a sm
periodic in-time perturbation. We use methods created to
scribe chaos in classical Hamiltonian systems to investig
the essentially quantum phenomenon of tunneling. It
achieved in the framework of the instanton technique, wh
solutions of Euclidian equations of motion~instantons! play
a dominating role with the use of standard methods from
viewpoint of chaos@11#. For the systems with periodic in
time perturbation energy is no more an exact integral of m
tion and the language of quasienergies is more adequate@12#.
For some estimations energy as an adiabatic invariant
also be used@13#. We study properties of chaotic instanto
solutions and calculate the form of the spectrum and
lower bound for the width of the ground quasienergy zon

A Hamiltonian of the system under consideration is tak
in the form

H̃5
1

2
p̃21v0

2 cosx2ex (
n52`

1`

d~ t2nT̃!. ~1!
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T̃ is the real-time period of perturbation,e describes the
strength of the perturbation. The mass of the particle equ
the unit. The considered cosine potential corresponds to
nonlinear oscillator. The phase space of the nonlinear os
lator has the topology of the cylinder@points (q,p̃) and (q
12p,p̃) are identified#. Thus its~quasi!energy spectrum is
discrete. Chaos-assisted tunneling between two major r
nance islands~inside the single potential well! for driven
nonlinear oscillator has been studied numerically in@4#. In
this work we study the system withx varying from 2` to
1`. This results in the band structure of the~quasi!energy
spectrum@14#. Systems with a spatially periodic potenti
were studied in instanton physics@15#. Perturbation used in
Eq. ~1! was exploited in the systems exhibiting quantu
chaos@16,17#.

There are papers devoted to chaos-assisted tunne
where some analytical predictions for billiard systems ba
on the path integral formulation of quantum mechanics
made@3#. A distinguishing feature of our work is the analyt
cal predictions for the system with a smooth potential. F
this purpose we explore the instanton technique adop
from quantum field theory@9#.

II. ANALYSIS OF CHAOTIC INSTANTON SOLUTIONS

For applying the instanton technique we consider so
tions of classical equations of motion inimaginary ~Euclid-
ian! time. The Hamiltonian~1! has the same form~translated
on p) in Euclidian time as in real time.

The Euclidian Hamiltonian of the system isH5H01V,
where

H05
1

2
p22v0

2 cosx ~2!

and

V5aTx (
n52`

1`

d~t2nT!. ~3!

Here H0 is the nonperturbed Euclidian Hamiltonian of th
system andV is the Euclidian potential of the perturbation
©2003 The American Physical Society01-1
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We also introduced the coupling constanta!1 instead of
e[aT in order to simplify formulas.

The nonperturbed instanton solution describes the mo
on the separatrix of the Hamiltonian~2!. It is well known
that this separatrix is destroyed by any periodic perturba
and on its place a stochastic layer is present@13#. Perturbed
instanton solutions correspond to the motion in the vicin
of the separatrix inside the layer. Therefore, instead of
instanton solution connecting the neighbor maxima of
nonperturbed Euclidian potential~classical vacuum states i
a real-time potential!, we obtain a manyfold of instanton so
lutions of Euclidian equations placed inside the stocha
layer.

We calculate the parameter of the local instability, t
width of the stochastic layer, and the correlator for perturb
instanton solutions. It is convenient to describe the dynam
of the system in action-angle variables@11#. The equation of
motion for the action variable has the form

İ 52
a ẋ

v S 2 (
m51

1`

cos~mnt!11D . ~4!

Herev(I )[dH0 /dI is the nonlinear frequency@11#. Instead
of an angle variable we introduce a phase of the exte
force c defined by the relationċ5n[2p/T @13#. Let Hs

[v0
2 denote the energy of a nonperturbed system on

separatrix. Continuous equations of motion forI andc can
be reduced to discrete mapping for the phase of exte
force in the vicinity of the separatrix (uH2Hsu!1)
@13,16,17#

cn115cn1Bn1K0 sin cn , ~5!

where

K05
8pan

v0

e2pn/2v0

uH2Hsu
,

Bn are some functions ofH whose exact form is not essenti
for our purposes. We assume, following@13#, that due to a
small value of perturbation the energy practically does
change with time and equals the energy of the nonpertur
system. The map~5! with an arbitrary parameterK0 was
studied by many authors, for instance@16#. Particulary, it is
known that atK0.1 the motion is locally unstable and ch
otic, whereas atK0<1 it is stable and regular. ThusK0 is the
parameter of local instability. ConditionK0;1 enables us to
calculate the width of the stochastic layer

uHs2Hbu5
8pan

v0
e2pn/2v0. ~6!

HereHb is the energy value on the bound of the stocha
layer.

To calculate the correlator for the perturbed instanton
lutions we use the standard technique@18#. For the map~5!
the correlator is

R~t,t0!5
1

2pE0

2p

dc0 exp$ i @c~t!2c0#%;expS 2
t2t0

tR
D .

~7!
01520
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Here c0[c(t0) and the time of correlations decay istR
52p/(v lnK0). The exponential decrease of the correla
shows that the dynamics of the instanton solutions inside
stochastic layer (K0.1) possesses the property of mixin
~chaos! @11#.

Note that the perturbed one-instanton solution due to
stochastic layer connects not only neighbor vacua of re
time potential but also twoarbitrary chosen vacua. We not
that in order to describe tunneling between non-neigh
vacua of nonperturbed systems one has to take into acc
the contribution of multi-instanton configurations@15#.

III. THE CALCULATION OF THE TUNNELING
AMPLITUDE AND GROUND ZONE WIDTH

Let us consider the tunneling between neighbor va
~from x'2p to x'p for distinctness! in the presence of
perturbation~3!. In Euclidian time this tunneling process fo
the nonperturbed system is described by the solution of
clidian equations of motion with asymptotesx52p, p
50 att52` andx5p, andp50 att51`. There is only
one solution satisfying these conditions for the nonpertur
system~2! ~a one-instanton solution!,

x0
inst~t2t0!52p14arctanev0(t2t0). ~8!

Its Euclidian action isSinst58v0. The instanton’s position is
denoted byt0. Due to Euclidian equations of motion and th
antisymmetry ofx0

inst , when time is inverted with respect t
the pointt0 perturbation~3! does not change the Euclidia
action of the one-instanton solution~8! in the first order on
the coupling constantSpert

inst5Sinst1O(a2). The only mani-
festation of the perturbation in this approximation is the a
pearance of a number of the additional solutions of Euclid
equations of motion with energies close to the energy of
nonperturbed one-instanton solution and placed inside
stochastic layer.

Let us consider firstly the nonperturbed system at a
trary energy2v0

21«, 0,«,2v0
2. One-half of the trun-

cated instanton action can be easily calculated,

S@xinst~t,«!#5E
2a(«)

a(«)
A2@v0

2cosx2~2v0
21«!#dx

54A4v0
222«ES a~«!

1

12
«

2v0
2
D , ~9!

where 6a(«)56arcsinA12«/2v0
2 are turning points, and

the functionE is the elliptic integral of the second kind.
Then the tunneling amplitude in theperturbedsystem can

be found by integration over the energy of the tunneli
amplitude in thenonperturbedsystem with the action~9!
1-2
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A5E
0

DH

d«E
x(t)'2p

x(t)'p

Dx exp$2S@xinst~t,«!#%, ~10!

where DH52uHs2Hbu is the stochastic layer width. Th
contribution of the chaotic instanton solutions is taken in
account by means of integration over«. Expression~10!
shows that the probability of tunneling~the square of the
absolute value of the tunneling amplitude! grows while the
chaotic region spreads (DH increases!.

The result is obtained in the first order on the coupli
constanta and does not take into account the possible str
ture of the stochastic layer. It is valid if the layer is narro
and is in agreement with results of numerical@19,20# and
real @6# experiments for similar problems. We also have c
respondence in Eq.~10! with the nonperturbed case@15#.
Namely, if a50 then DH50 and the single solution de
scribing the motion on the separatrix~the nonperturbed one
instanton solution! contributes to the tunneling amplitude.

Formula~10! can be made more transparent if we use
approximate form of action~9! at «,2v0

2,

S@xinst~t,«!#'8v02
p«

v0
. ~11!

Then in the Gauss approximation we obtain the followi
expression for the tunneling amplitude:

A5E
0

DH

d«E
2`

1`

dc0AS@xinst~t,«!#exp$2S@xinst~t,«!#%

'e2SinstASinstGF5A8v0Ge28v0epDH/v0, ~12!

where integration overc0 gives the contribution of zero
modes, andG is a time of the tunneling. Formula~12! up to
the factori has the same form in real Minkovski time.

Expression~12! can be interpreted in the following way
FactorF5exp(pDH/v0).1 in Eq. ~12! differs between per-
turbed and nonperturbed amplitudes and includes the co
bution of the layer. One can think aboutF as a number of
instanton solutions inside the stochastic layer.

We can find the minimal number of instanton solutio
inside the stochastic layer. One cannot distinguish instan
solutions within the energy intervalDE;1/Dt ~the Heisen-
berg uncertainty relation!. HereDt;v0

21 denotes the time
interval of observation. Thus the energy interval between
neighbor instantons isD«;v0. Therefore parameterF can
be found as follows:

F;11
DH

D«
'eDH/v0, ~13!

where the unit takes into account the nonperturbed sep
trix.

The form of the spectrum of the lower quasienergy zo
is obtained using the amplitude~12! by means of the stan
dard technique~multi-instanton contributions are taken in
account! @15#,
01520
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1

2
v022e2SinstASinstFcosu. ~14!

Here the continuous variableu parametrizes levels of the
ground quasienergy zone. The zone width

DE'4e2SinstASinstF ~15!

differs from the nonperturbed case by a factorF that reflects
the influence of perturbation.

IV. CONCLUSION

We applied the theory ofclassicalchaos for an investiga
tion of the chaos-assistedtunneling in terms of the path in-
tegral formalism in imaginary time and instanton techniqu
We found the parameters of the local instability and t
width of the stochastic layer. An exponential decrease of
correlator for any perturbed instanton solution was also de
onstrated, which means it possesses the property of mix
Then properties of the stochastic layer and classical cha
solutions in Euclidean space~chaotic instantons! were used
for the calculation tunneling amplitude and the grou
quasienergy zone spectrum in the presence of the pertu
tion and the zone width.

The general tendency for the chaos-assisted tunneling
gime ~on average — if we abstract from fluctuations! is an
increase of the tunneling amplitude~probability! as the
strength of the perturbation increases@6,20#. It is confirmed
here. The reason is the growth of the width of the chao
layer and therefore the increase of the number of paths f
particle to travel from one regular region to another. F
small energies in the Gauss approximation the tunneling
plitude is increased by the factorF.1. The lifetime of the
particle in a certain vacuum of the system decreases.
connected with the widening of the~quasi!energy zone~15!.

We would like to emphasize that the obtained results
not consequences of a particular choice of the nonpertur
Hamiltonian ~2! or perturbation~3!. Qualitatively they are
valid for a more general class of one-dimensional nonp
turbed Hamiltonians with a quadratic dependence on the
mentum and the spatially periodic potential with a sing
well in each period, as well as the fact that the time dep
dence of the homogeneous perturbation can be realize
any time periodic function. The reason is the universality
the separatrix destruction mechanism in these potentials
is affected by time-periodic perturbation@13#.

Tunneling plays an important role in gauge field theor
~instanton physics@9#!. The experimental discovery of QCD
instantons, for example, is an important problem@21#. More-
over, it is known that classical gauge field theories are inh
ently chaotic@22#. Therefore, the study of chaos-assisted
stanton tunneling in gauge field theories based on ch
criterion in quantum field theory@23# is also of essentia
interest.
1-3
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